If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-16x^2-80x+64)/(x-1)=0
Domain of the equation: (x-1)!=0We multiply all the terms by the denominator
We move all terms containing x to the left, all other terms to the right
x!=1
x∈R
(-16x^2-80x+64)=0
We get rid of parentheses
-16x^2-80x+64=0
a = -16; b = -80; c = +64;
Δ = b2-4ac
Δ = -802-4·(-16)·64
Δ = 10496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10496}=\sqrt{256*41}=\sqrt{256}*\sqrt{41}=16\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-16\sqrt{41}}{2*-16}=\frac{80-16\sqrt{41}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+16\sqrt{41}}{2*-16}=\frac{80+16\sqrt{41}}{-32} $
| 13/8p+p=-21/4 | | -2n(-6-7n)+5n=145 | | 0=325x-7500-x^2 | | 0.625(x+10+)-10=0 | | 3x-18=9(-3-3/4x) | | 6.2h+6-1.4h=2.8h+5 | | 3x+15-5x=19 | | 6p=7+7p | | 12g=12(3/2)+11 | | 4a-10-18=0 | | Y=5+2r | | 3(u+1)+1=19 | | 2(2w-3)=6w-20 | | .15x=40000 | | -8=7+3k | | 9+4/3=6x+31/3 | | 15-0.75=13-0.5x | | 7x-3(×-2)=-4(5-×) | | 3-c=-1 | | 5r6=4r-(r-3) | | n+9=2n+6 | | 8-v=5 | | 3.4+10m=8.29 | | x/6=5/9 | | -12=1/2(6x-12 | | 14+x2=20+1.50 | | 3x+11/4+x+42/5=14 | | 8=2(q-5) | | 4(2d-1)=12d | | -2(t+2)+5t=6t=6t+2 | | -1+5b=5(1+b) | | 155x=8x-24 |